Your Guide to Understanding Genetic Conditions ## GDF3 gene growth differentiation factor 3 #### **Normal Function** The GDF3 gene provides instructions for making a protein that is part of the transforming growth factor beta (TGF β) superfamily, which is a group of proteins that help control the growth and development of tissues throughout the body. Within the TGF β superfamily, the GDF3 protein belongs to the bone morphogenetic protein family, which is involved in regulating the growth and maturation (differentiation) of bone and cartilage. Cartilage is a tough but flexible tissue that makes up much of the skeleton during early development. The proteins in this family are regulators of cell growth and differentiation both before and after birth. While the GDF3 protein is known to be involved in bone and cartilage development, its exact role is unclear. The GDF3 protein has also been found to be involved in the development of the eyes, specifically the specialized light-sensitive tissue that lines the back of the eye called the retina. ## **Health Conditions Related to Genetic Changes** coloboma ## Klippel-Feil syndrome At least four mutations in the *GDF3* gene have been found to cause Klippel-Feil syndrome, a condition characterized by the abnormal joining (fusion) of two or more spinal bones in the neck (cervical vertebrae) and a variety of other features affecting many parts of the body. *GDF3* gene mutations that cause Klippel-Feil syndrome replace single protein building blocks (amino acids) in the GDF3 protein. These mutations likely lead to a reduction in functional protein. Although the GDF3 protein is involved in bone growth, it is unclear how a shortage of this protein leads to incomplete separation of the cervical vertebrae in people with Klippel-Feil syndrome. #### microphthalmia #### **Chromosomal Location** Cytogenetic Location: 12p13.31, which is the short (p) arm of chromosome 12 at position 13.31 Molecular Location: base pairs 7,689,785 to 7,695,764 on chromosome 12 (Homo sapiens Annotation Release 108, GRCh38.p7) (NCBI) Credit: Genome Decoration Page/NCBI #### Other Names for This Gene - GDF-3 - GDF3 HUMAN - growth/differentiation factor 3 #### Additional Information & Resources #### **Educational Resources** - Madame Curie Bioscience Database: Bone Morphogenetic Proteins https://www.ncbi.nlm.nih.gov/books/NBK6520/#A46768 - StemBook (2008): The TGFβs Nodal, Gdf1 and Gdf3 are endoderm inducers in vertebrates - https://www.ncbi.nlm.nih.gov/books/NBK27052/#endodermspecification.sec2-4 #### Scientific Articles on PubMed PubMed https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28GDF3%5BTIAB%5D%29+OR+%28growth+differentiation+factor+3%5BTIAB%5D%29+AND+%28%28Genes%5BMH%5D%29+OR+%28Genetic+Phenomena%5BMH%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+3600+days%22%5Bdp%5D #### **OMIM** GROWTH/DIFFERENTIATION FACTOR 3 http://omim.org/entry/606522 #### Research Resources - Atlas of Genetics and Cytogenetics in Oncology and Haematology http://atlasgeneticsoncology.org/Genes/GC_GDF3.html - ClinVar https://www.ncbi.nlm.nih.gov/clinvar?term=GDF3%5Bgene%5D - HGNC Gene Family: Endogenous ligands http://www.genenames.org/cgi-bin/genefamilies/set/542 - HGNC Gene Symbol Report http://www.genenames.org/cgi-bin/gene_symbol_report?q=data/ hgnc_data.php&hgnc_id=4218 - NCBI Gene https://www.ncbi.nlm.nih.gov/gene/9573 - UniProt http://www.uniprot.org/uniprot/Q9NR23 ## **Sources for This Summary** - OMIM: GROWTH/DIFFERENTIATION FACTOR 3 http://omim.org/entry/606522 - Levine AJ, Brivanlou AH. GDF3 at the crossroads of TGF-beta signaling. Cell Cycle. 2006 May; 5(10):1069-73. Epub 2006 May 15. Review. Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16721050 - Levine AJ, Levine ZJ, Brivanlou AH. GDF3 is a BMP inhibitor that can activate Nodal signaling only at very high doses. Dev Biol. 2009 Jan 1;325(1):43-8. doi: 10.1016/j.ydbio.2008.09.006. Epub 2008 Sep 18. - Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18823971 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3740937/ - Ye M, Berry-Wynne KM, Asai-Coakwell M, Sundaresan P, Footz T, French CR, Abitbol M, Fleisch VC, Corbett N, Allison WT, Drummond G, Walter MA, Underhill TM, Waskiewicz AJ, Lehmann OJ. Mutation of the bone morphogenetic protein GDF3 causes ocular and skeletal anomalies. Hum Mol Genet. 2010 Jan 15;19(2):287-98. doi: 10.1093/hmg/ddp496. Epub 2009 Oct 28. Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19864492 ## Reprinted from Genetics Home Reference: https://ghr.nlm.nih.gov/gene/GDF3 Reviewed: May 2015 Published: March 21, 2017 Lister Hill National Center for Biomedical Communications U.S. National Library of Medicine National Institutes of Health Department of Health & Human Services